

Lessons Learned from a Software R6σ Project V-22 Mission Planning System Software

Content

- Description of Project and Goals
- Raytheon R6σ Methodology
- CMM Methodology
- Results
- Major Lessons Learned
- CMMI Application
- Conclusions

Description of Project and Goals

- RTSC Indianapolis S/W Engineering Department moving towards CMM Level IV
- V-22 Mission Planning System (VMPS) S/W a key project
- Use the Raytheon Six Sigma (R6σ) process to:
 - Verify process gaps identified previously via interim CMM profile assessment
 - Identify actions to alleviate gaps
 - Implement actions

Raytheon R6σ Methodology

Visualize

- Future: RTSC Indianapolis S/W Engineering at CMM Level IV
- Current: VMPS not executing at CMM Level III
- Strategy: Establish a framework for the VMPS project to understand and appropriately use key processes

Commit

- Sponsorship
- VMPS team buy-in
- R6σ cross-functional team committed

Raytheon R6σ Methodology, continued

Prioritize

- Chart the results from the CMM interim profile assessment by key process area and rank
- Determine which KPA's to focus on

Characterize

- Team meetings and individual interviews to determine and document
 - validity and currency of gaps
 - root causes
 - expected improvements and plan of action

Raytheon R6σ Methodology, continued

- Improve
 - Perform the action items according to plan
- Achieve
 - Measure success with repeated interim profile assessment
 - Experience improved team performance
 - Document plan implementation and successes
 - Present results to senior management
 - Celebrate

CMM Methodology

- In R6σ Characterize phase
 - Individuals and team queried with CMM Level II/III
 KPA goal oriented questions for current state of project
 - new team members since interim CMM profile assessment
 - new release of software
 - new tools being used
 - Team brainstormed causes for original gaps identified in interim CMM profile assessment
 - Findings and associated actions for alleviation of gaps determined and documented in an action plan

Results

- 41 gaps classified via R6σ and SEPG-based CMM systems
 - SEPG error types Lack of awareness, Lack of compliance, Unclear process, Inadequate process
 - R6σ error types -Correction, Over production, Motion,
 Material movement, Waiting, Inventory, Processing
- 89 resulting actions in plan
 - Distributed as project, SEPG, S/W Engineering,
 Systems Engineering, Engineering actions
- 6 big-hitters targeted for immediate attention for $R6\sigma$
 - CMM Lack of compliance = $R6\sigma$ Correction type

Results, continued

- Big-hitters
 - SCM Changes to S/W observed beyond the development stage during test
 - SPTO Progress indicators not always available
 - IGC CASOWs not complete for current effort
 - IGC SEN not maintained IAW defined process and not current
 - ISM Existing planning documents not "living"
 - RM Lack of traceability from the SRS to the SDD

Major Lessons Learned

- Differences in CMM and R6σ approaches
 - Common: improvements in productivity, efficiency, quality, customer satisfaction
 - CMM: process focused, institutionalization to achieve goals, statistical process control at Level V
 - R6σ: customer focused, bureaucracy busting, tools and statistics to eliminate waste, begin by throwing away
 - Resolve by: setting ground rules, boundaries and assumptions at beginning of project

Major Lessons Learned, continued

- 5 of the 6 big-hitters attributed in part to departmental process differences or intergroup coordination issues; numerous of the remaining gaps likewise
 - SCM Changes to S/W observed beyond the development stage during test
 - cause S/W testing done by team outside of S/W. Tool used for CM not familiar to this group; no cross-training. Communication between S/W and test groups not consistent.
 - SPTO Progress indicators not always available
 - cause metrics and tools used by S/W clearly defined but not same as used by Systems for customer. Confusion. Lack of training and coordination.

Major Lessons Learned, continued

- IGC CASOWs not complete for current effort
 - cause lack of communication between Systems and S/W, inconsistent understanding of control of project and expectations of leads
- IGC SEN not maintained IAW defined process and not current
 - cause Systems Engineering structure and expectations different than pre-existing S/W SEN
- RM Lack of traceability from the SRS to the SDD
 - cause DOORs tool used for requirements at Systems level not cross-trained or readily available at S/W Engineering level

CMMI Application

- Where does CMMI come in?
 - Goes beyond the "stovepipe"
 - Focuses on enterprise processes and improvement
 - Integrated approach
 - Common terminology, style, rules, and components
 - Refines and expounds on process areas
 - Common understanding of requirements

CMMI Application, continued

- Application to the big-hitters lesson
 - Cross-training of Systems and S/W, others on tools
 - Availability of processes and tools across departments
 - Engineering level processes that flow down instead of up from S/W Engineering
 - Common understanding of lead roles, terminology
 - Improved communications through common
 Engineering notebook structures, meeting minutes, etc.

Conclusions

- RTSC Indy's V-22 Mission Planning System software R6 σ effort highlighted issues that are typical of industry findings associated with the CMM-based process improvement efforts.
- The "gaps" found in this effort would have been fewer if enterprise process solutions had been in place and in use.
- These findings support RTSC Indy's plans to move first to S/W CMM Level IV, then to CMMI level IV for Systems and Software Engineering.